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A method of random event generation is described that allows wide choices for the 
frequency distribution of the generated events in Lorentz-invariant phase space. 

1. INTRODUCTION 

The convenience and generality of Monte Carlo methods for predicting the 
results of experiments from theoretical models, and for simulating experiments for 
the measurement of efficiencies and biases, has led to their extensive use in particle 
physics. For these applications the Monte Carlo method is used to evaluate phase- 
space1 integrals of the form R = JV r@) drip, where p is a point in the (3n - 4)- 
dimensional phase space, d”p is a volume element, and u is the phase-space volume 
over which the function is to be integrated. This volume could be the total phase- 
space accessible to the n-particle final state or a subvolume delimited by equipment 
configuration or restrictions placed on experimental measurables. 

More specifically, p = (pl ***P,,) and 

drip = fi d4PiS(P$ - 
i=l 

(1) 

where pi is the four-momentum of the i-th final-state particle and P,, is the four- 
momentum of the initial state. Then r(p) drip is the transition rate from the initial 

* Work done under auspices of the U. S. Atomic Energy Commission. 
1 Phase space, as discussed here and defined by Eq. (l), is the momentum-space factor of phase 

space as usually defined in statistical mechanics. The spatial integrations of phase space are 
ignored in this report, since the results of scattering experiments are stated in terms of the momenta 
of the interacting particles. If one normalizes in a box of volume iY, then the phase-space integral 
contains the factor H* for an n-particle tial state. However, since no physical quantity measurable 
in a scattering experiment depends upon this spatial volume factor, it is ignored. For a more 
complete discussion see Ref. [S, p. SO]. 
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state to the volume element dRf centered at the point p, and R is the total rate into 
the volume V. 

To evaluate R by a Monte Carlo method one could generate N random points 
with constant frequency in the volume a. Then, 

R = (r), V = G .F r(pi), 
a=1 

where r@J is the value of r(p) for the i-th random point and V = so drip. The simple 
phase-space integral J’u drip can be explicitly evaluated only if all the final-state 
particles have zero rest mass or, for the case of nonzero rest masses, only if IZ = 2. 
Therefore, for general application of the Monte Carlo method, the phase-space 
integral R = s,, r(p) drip is transformed to R = SW r(p) J(p) d%. J@) is the Jacobian 
of a transformation from a set of variables cx to those of the phase space, and w is 
the volume u expressed in the 01 variables. The volume w is chosen so that its integral 
W = SW d% can be explicitly evaluated. One then generates N random points 
with constant frequency in the volume w and evaluates the average 

For most applications the volume w is taken to be a (3n - 4)-dimensional cube of 
unit length on a side. For this choice W = 1 and each random point is composed 
of 3n - 4 random numbers generated in the interval (0, 1). 

The principal limitation of this Monte Carlo method is that the number of 
random points needed for the required statistical accuracy may be prohibitive. 
The statistical uncertainty in this Monte Carlo evaluation of R is (SR) = 
u(rJ) W1i2, where o(rJ) is the rms deviation of r(p) J(p) from its average value. 
For a given statistical accuracy, (AR), the smaller o(rJ) [i.e., the smoother the func- 
tion r(p) J(p),] the smaller the number of random points required. However, 
functions that vary rapidly or have appreciable value only for small regions of the 
volume of integration have relatively large a(rJ), and many random points may be 
required to give acceptable statistical accuracy. 

The form of the Jacobian J(p) is not unique. This is most easily seen by making 
the transformation a two-step process. First the unit cube, w, is transformed to 
another volume, U, and then a transformation is made from u to the phase-space 
volume, V. For this case J(p) = J,,,(p) J,,,(p), and the phase-space integral 
becomes 

If the volume u can be chosen so that J,,,(p) approximates the inverse of r(p) 
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while J,,,,(p) is relatively slowly varying, then a(rJ) is reduced and the accuracy of 
the Monte Carlo integration is increased for the same number of random points. 
This procedure is equivalent to generating points in the phase-space volume with 
frequency f(p) = l/[J,,,(p) J,,,@)]. To the extent that J,,,(p) is slowly varying 
f(p) can be approximated by g(p) = l/J,,,(p). It is this function, g(p), that is 
usually referred to as the phase-space frequency distribution, whereas J,,,(p) is 
considered a modifying weight. If the frequency distribution, g(p), is a good 
approximation to r@) [while J,,,(p) is slowly varying] the number of Monte Carlo 
points needed for a given statistical accuracy is greatly reduced. 

Thus, in order to use Monte Carlo techniques efficiently, one needs a generator 
that randomly generates points in Lorentz-invariant phase space2 with a variety of 
choices for the frequency distribution of the points. In particle physics most 
transition rates, r(p), have sharp dependencies on the invariant masses and four- 
momentum transfers squared of various final-state particle combinations. This 
report describes a method of random-event generation which allows the general 
frequency distribution 

n-1 

g(p) = n BW(pJ fi eajti, 

where n is the number of final-state particles, the pi are the invariant masses of 
various particle combinations, and the tj are the four-momentum transfers squared 
to various particle combinations from either the beam or target particle. BW can 
be either a constant or a primitive Breit-Wigner function 

The choices of the particle combinations for the pp and tj are very general; the 
restrictions are described in Section III. The set of parameters Et , r, , and aj may 
have arbitrary values, thereby allowing for wide choices in the phase-space 
frequency distribution of the generated events. 

Other random-event generation methods have been developed for different 
phase-space frequency distributions [l-6]. For example, Byckling and Kajantie 
[2,3] describe event generation with the phase-space frequency g(p) = I& eajtj, 
where the tj are the four-momentum transfers squared that correspond to particle 
exchanges in the multiperipheral model [7] ( a subset of the choices for the tj 
in Eq. 2). Kittel, Van Hove, and Wojcik [5] employ the method of Van Hove [6] 
to generate events with phase-space frequency g(p) = nycl eaaie, where the pi 
are the components of the final-state particles’ momentum, transverse to the beam 
direction. 

2 A point in Lorentz-invariant phase space will be referred to as an “event” in this report. 
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II. PHASE SPACE 

The starting point for this random-event generation method is the reexpression 
of drip from the four vectors pi of Eq. (1) to invariant masses and angles of subsys- 
tems of particles. This is accomplished by application of the factorization property 
of Lorentz-invariant phase space [8]. One way of expressing this property is 

x dn--lep(/&-lc ,mk+l "'m,>. (3) 

Here Eq. (3) divides the n-particle final state into two systems of k and n - k 
particles respectively, m, se* m, are the rest masses of the final-state particles, E, 
iS the total invariant mass Of the final State, pk and CL,& are the invariant masses 
of the two final-state systems, and qk and &?k are the magnitude and direction of the 
total three-momentum of the k system in the overall center of mass. Explicitly 
one has 

qk = [( 
Eo2 + pk2 - &-k 2 

2E 
0 

) - /+2]1’2. 

The factor dkp(pk , m, *.. mk) is k-particle phase space for the system of particles 
ml *** ml, with invariant mass & ; dn-kp(p,-k , mk+, *** m,) is the analog for the 
recoiling System Of It - k particles; &k&/4& is phase space for tW0 bodies Of total 

invariant mass E, , having invariant masses pk and pm-k respectively; and &k2) 
expresses3 energy conservation by allowing only physical values for pk and PLpI-k . 
Equation (3) explicitly expresses the dependence of drip on dpk2, dpEek, and &k . 

Next dkp(pk , ml **a mk) and dn-kp(pn-k , mk+l .** m,) are themselves each 
factored into two subsystems in the same way. By repeated application of this 
factorization, the n-particle phase space can be represented as a product of n - 1 
two-particle phase spaces. Thus, 

d9@o , ml *** m,J = 6(pn2 - Eo2) fi * dpi2 dQi O(q,“) 6 (connected), (4a) 
i-2 4Pi 

or, since dpi2 = 2pi dp, , 

dndEo , ml *.. m,,) = a(~,,” - Eo2) fi $ dpt dQ 0(qi2) 0 (connected). (4b) 
i-2 

Each term in the product can be thought of as the decay of a parent system into 

8 8(x) is the Heavyside step function, B(x) = 
o,x<o 

t, 
1 x , o 
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two daughters: pLi is the invariant mass of a parent system, qi and 52, are the 
magnitude and direction, respectively, of the momentum of one of the daughters 
in the parent’s rest frame (qi and -Q represent the momentum of the other 
daughter). The delta function requires that the invariant mass of the whole final 
state be the center-of-mass energy E,, . The first step function, d(qi2), requires that 
energy be conserved at each step in the decay chain, and the second step function, 

ml 

i-, 
q2 

P2 m2 

FIG. 1. The three ways to connect two-body “decay” vertices to form a five-particle final state. 

0 (connected), requires that the invariant masses and solid angles appearing in 
Eq. (4) correspond to subsystems that connect together to form such decay chains. 
Thus, although there is a wide choice for the n - 2 invariant masses and n - 1 
decay angles appearing in Eq. (4), they are not completely arbitrary. Figure 1 
diagrams the three possible ways to connect a five-particle final state. 
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III. EVENT GENERATION 

The procedure described in the preceding section for factoring n-body phase 
space into n - 1 connected two-body decay phase spaces is the basis for this 
random-event generation method. First the final state is factored into an arbitrary 
set of n - 1 two-body “decay” vertices (like those diagrammed in Fig. 1 for a 
five-body final state). Then each vertex is generated one by one. Thus, in order 
to generate an entire final state, one need only be able to generate the two-body 
“decay” vertex for the reaction p -+ p1 + pz and connect these vertices to form the 
entire final state. One must start with the highest-mass vertex and work down to 
the next highest and so on, since energy conservation imposes constraints on the 
generation of the lower vertices. 

Consider the generation of the two-body decay p --+ p1 + pz . Let p and p be 
the four-momentum and invariant mass of the parent in an arbitrary Lorentz 
frame and ptil and pzccz be those of the daughters. Here p is input to the problem 
andp, andp, are the desired answer; p1 orp, (or both) may represent single particles 
or particle combinations. 

First consider the most general case, in which both p1 and pz represent multi- 
particle combinations. The invariant mass pL1 is first generated in the interval 
(S, , p - S,), where S, and S, are the sums of the rest masses of the particles 
combining to form p1 and pz . Next pz is generated in the interval (S, , p - &. 
From these masses one can evaluate 

j p1 1 = 1 p2 1 = q = [( p2 + p; - pz )" - p12]1'2. 

Next, the direction for p1 (= A) is generated over the full range of solid angle, 
and p1 = qff, p2 = -q& plo = (q2 + ~~~)r/~, and pzo = (q2 + ps2)li2. 

These four vectors, p1 and p2 , so evaluated, are expressed in the Lorentz frame 
p = (0, p). They may then be transformed to the arbitrary Lorentz frame 
P = @, P”>. 

If one of the daughter systems (say p2) represents a single particle with mass m2 , 
then only p1 and k need to be generated, since ,u2 = S, = m2 . If both daughters 
are single particles then only ff needs to be generated, since p1 = S, = m, as well as 
p2 = S, = m2. 

The manner in which pL1 , p2 and R are generated is dictated by the dependence of 
the frequency distribution function g(p), of Eq. (2), on these variables. 

If the n - 2 pi’s in Eq. (2) correspond to the invariant masses of the subsystems 
into which the final state has been factored, and if the n - 1 t,‘s correspond to the 
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four-momentum transfers squared to these subsystems, then Eq. (2) may be 
rewritten as 

where each g&) corresponds to a particular two-body decay vertex. This constitutes 
the restrictions (referred to in the introduction) on the choices for the ~$3 and 
tj’s (of Eq. 2) imposed by this method. 

If a Breit-Wigner distribution for an invariant mass is not desired, then the mass 
is distributed randomly according to a constant frequency distribution within its 
limits. If a Breit-Wigner distribution for cc1 or p2 or both is contained in g&), then 
one defines a new variable 

7’ ,I SW(Y) dx’ = g [tan-’ (-$$-) - tan-l (%)I9 (64 

where x = p1 or p2 and S = S, or S, . One then distributes 7 randomly with 
constant frequency in the interval [0, $+)I, where 

r q7’+) = _ tan-1 Xmax - 
2 [ ( 

E 
J-72 ) - tan-l (~,I* 

Once 71 is generated, inverting Eq. (6a) gives the corresponding value for X. 
If g*(p) contains no functional dependence on x, then A is generated randomly 

in solid angle with a constant frequency distribution. That is, the polar angle 0 
is generated so that cos 0 is uniformly distributed in the interval (- 1, 1) and the 
azimuthal angle 4 is uniformly generated in the interval (0,2~r). Then A = 
(sin 19 cos 4, sin 13 sin (b, cos 19). 

If k is to be given an eat frequency distribution with respect to some momentum 
vector represented by A = (A, A”) in the Lorentz frame p = (0, CL), then a more 
involved procedure must be employed. Proceeding as in the case of invariant masses, 
one defines a new variable 

6 = f eat’ dt’ 
t- 

(74 

and randomly generates 8 with a constant frequency in the interval [0, &+)I, where 

a(+) = i (eat+ _ eat-), (-4 

and 

t* = maa + x2 - 2A”(q2 + xa)l/a & 2 1 A 1 q (7c) 

5W7/2-2 
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and 

ma2 = (A")* - 1 A 12. 

Here, x = p1 or pz depending upon whether p1 or pz is to have the eat distribution. 
Equation (7a) is inverted to solve fort once 6 is generated. Solving further for cos 0, 
one has 

t - t- 
cos 8 = 2 ~ - 

t+ - t- 1. 

A more complicated angular frequency distribution may be given to k. Let 
Z(cos 6’) be some decay angular distribution desired for & with respect to the direc- 
tion defined by A. Define a new variable 

y= jye Z(cos e,) d(cos 6’) (8) 

and randomly distribute y with uniform frequency in the interval [0, y(f)], where 

I 
1 

++I = Z(cos 8’) d(cos e,). 
-1 

Equation (8) is then inverted (if such inversion is possible in closed form) to obtain 
cos f3 in terms of the generated y.4 

Once cos 8 is known, a unit vector .! is generated such that 1, = cos 6’ and i has 
a random azimuth angle with respect to A; an azimuthal angle 4 is generated in the 
interval (0,277). Then i = (sin 0 cos 4, sin 0 sin 4, cos 0) is the representation of & 
in the coordinate system, where A/j A 1 = (0, 0, 1). Then i is rotated to the coordi- 
nate system, where A/J A 1 = (AZ:, A, , A,)/1 A 1 to obtain &, i.e., ff = R(A/I A I$, 
where R is the rotation operator. 

The vector A may be any momentum in the problem. For example, it could be 
the beam or target momentum, expressed in the Lorentz frame p = (0, p), or the 
helicity direction p. Also, the eat or Z(cos 0) frequency distribution can be given to 
either pl or pz . 

If pl or pz (or both) represents multiparticle systems then they become parents 
and are in turn factored into daughter subsystems, and the four-vectors of these 
daughters are generated in the same manner as above. This factoring of multi- 
particle systems into subsystems is continued until the four-vectors of all of the 
final-state particles are generated. 

4 Equation (8) can always be inverted by simple numerical methods. 
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IV. PHASE-SPACE WEIGHTING 

The random-event generation method described in the preceding section uses 
invariant masses and decay solid angles of particle subsystems as the generation 
variables. These particular variables were chosen because the limits imposed upon 
them by momentum and energy conservation are easily obtained. Events distributed 
uniformly in Lorentz-invariant phase space are distributed uniformly in these 
solid angles but not, however, in these invariant masses. Conversely if events are 
generated uniformly in these invariant masses [which is the prescription of this 
generation method for g(p) = l] they will not be uniformly distributed in Lorentz- 
invariant phase space. This is apparent from Eq. (4b), which may be rewritten as 

Inspection of Eq. (4c) shows that events generated uniformly in the n - 2 ~1)s will 
have the frequency distribution (ny=, qi/2nEo)-1 in Lorentz-invariant phase space. 
Thus, in order to achieve distributions that correspond to Lorentz-invariant phase 
space, each event generated by this method must be weighted by the quantity 

Equation (4c) may be written as 

n-1 

d”p = 4~; I-G 1;2) dQn p2 dJ-4 +i , where J(p; p, Q) (10) 

represents the Jacobian of the transformation from the mass and angle variables 
to those of the phase space. Thus, wI, is just this Jacobian. As discussed in the 
introduction, the weight applied to each random event is the Jacobian of the trans- 
formation from the (3n - 4) random numbers to the phase space. To obtain this 
Jacobian, J(p; p, Sz) must be multiplied by the Jacobian of the transformation from 
the random numbers to the mass and angle variables. This second transformation 
and its Jacobian, J(p, D), are detailed below. The Jacobian of the complete transfor- 
mation is the phase-space weight, w@), for the Monte Carlo events, and is given by 
w(p) = J(P; P, Q) JOL, In>. 

Consider the generation of the two-body decay p + p1 + pz discussed in Section 
III (the notation used in the following discussion is the same as in Section III). The 
invariant mass p1 is generated uniformly or according to a Breit-Wigner distribu- 
tion in the interval (S, , p - S,) imposed by energy conservation. For the case of 
uniform generation, this can be accomplished by setting p1 = (p - S, - S&r, + S, , 
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where rl is a random number generated uniformly in the interval (0, 1). The 
Jacobian of this transformation is simply &.A~) = (j.~ - S, - S,). For the case of 
Breit-Wigner generation of p1 the transformation is a two-step process. First ql 
is generated in the interval [0, #‘I, then Eq. (6a) is inverted to solve for p1 . The 
generation of Q is accomplished by setting Q = $+)rl , thus J(Q) = Q). The 
Jacobian of the transformation involved in solving for p1 in terms of Q is l/SW&) 
by construction. The Jacobian of the complete transformation for the Breit-Wigner 
generation of p1 is J&r) = J(Q)/BW(~~) = @/BW(&. 

The second invariant mass pz is generated in the interval (S, , p - pl), also 
imposed by energy conservation, in the same manner as the generation of p1 
described above. Thus, J&) = p - p1 - S, for uniform generation or J(&) = 
v#‘/BW~“~) for Breit-Wigner generation. Specifically for Breit-Wigner generation 
of pI or pz (or both), 

J(& = g [tan-l ( ’ -;JL El ) - tan-l ( S1Py2E1)] {[& - E1)2/I’I]2 + 1}, 

J&) = % ban-l ( ’ -&- E2 ) - tan-l 
2 ( s2r;2E2 )] {KPZ - E2P/r212 + 1). 

(lib) 
The direction & = (cos 8, $) of p1 (or -p2) in the rest frame ofp is generated in 

the full range of solid angle. For the case of uniform frequency distribution this is 
accomplished by setting cos B = 2r, - 1 and r$ = 2n-r+, where rz and rg are 
random numbers generated in the interval (0, 1). Then d(cos 6) d$ = 4n dr, dr, , 
so that J(x) = 47~. 

Consider now the case in which A is given an eat frequency distribution. First S 
is uniformly generated in the interval [0, &+)I (Eq. 7). That is, 6 = &+)r, , where rz 
is a random number generated in the interval (0, 1). Thus J(S) = a(+). Then 
Eq. (7a) is inverted to solve for t. The Jacobian of this transformation by construc- 
tion is e+, thus J(t) = S(+)e- at Then Eq. (7d) is inverted to solve for cos 8, so . 
that d(cos @/dt = 2/(r+ - t-). When these results are combined, J(cos 0) = 
28(+)e-at/(t+ - t-). Next the azimuth angle, 4, is generated in the same manner as 
above, so that J(4) = 27~. Combining these results and inserting the explicit expres- 
sion for S(f), one has 

J(A) = J(cos 8) J(4) = 4+$‘: ;)e;;) (12) 

for the case of an eat generation for k 
The final Jacobian for the decay vertex p -+ p1 + p2 is J& , p2, l) = 

J(& .$A~) .I(&. The Jacobian for the entire final state is the product of the Jaco- 
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bians of each of the decay vertices that combine to form the final state. Therefore, 

where the product is over all the decay vertices. 
Equation (13) represents the Jacobian of the transformation from the 3n - 4 

random numbers to the invariant masses and decay solid angles. This must be 
combined with J(p; ~1, Q), which is the Jacobian of the transformation from the 
invariant masses and decay angles to the phase space, in order to form the phase- 
space weight for events generated by this method. Thus 

Equation (14) represents the Jacobian of the transformation to the n-particle 
phase space from the (3n - 4)-dimensional unit cube. 

V. APPLICATIONS 

This random-event generator may now be used to evaluate phase-space integrals 
and simulate experiments as discussed in the introduction. To evaluate phase-space 
integrals of the form R = sv r(p) d’+ or simulate an experiment with the matrix 
element squared, r(p), a generation function g(p) (Eq. 2) is first chosen that most 
closely approximates r(p). The n-particle final state is factored into the appropriate 
subsystems whose invariant masses and four-momentum transfers squared enter 
explicitly into g@). A sample of N Monte Carlo events is generated so as to corre- 
spond to a random distribution in Lorentz-invariant phase space with frequency 
df). 

For each event, r(p) as well as w@) (Eq. 14) is evaluated, and then one has 

R(o) = I,,, rW d*p = U/N i r@d w(Pd e(u - pi>. (15) 
. i=l 

The sum is over the generated events; V is the total phase-space volume accessible 
to the system, and a < V is the subvolume of phase space into which the rate is to 
be determined. The step function O(u - p) is zero for the region of phase space 
outside v and unity inside. This subvolume could be, for example, the phase-space 
volume included by the experimental apparatus or that defined by an interval of 
a kinematic variable. 

The phase-space integral, R(v), as evaluated in Eq. (15), may be used directly to 
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determine interaction rates. This is because w@) is the Jacobian of the transforma- 
tion from a unit volume to the phase space. If the n-particle final state results from 
the decay of a particle with energy E in some Lorentz frame, then the decay rate 
(number of decays per particle per time) into the subvolume, ZI, in that Lorentz 
frame is 

h(v) = I/t(u) = R(D)/~E(~zT)~“-~. (16) 

If the tinal state results from the collision of two particles, then the total collision 
cross section into the subvolume, a, is 

a(u) = R(u)/4m 1 p / (27r)3n-4, (17) 

where m is the mass of one of the incident particles and 1 p 1 is the momentum of 
the other particle in the rest frame of the first. 

Differential cross sections are evaluated by employing Eqs. (15) and (17) with 
appropriate definitions of the subvolume, v. Let dujda be the differential cross 
section with respect to some measurable quantity, a. Then do = (du/da) da or, 
approximately, da = o(dv,) = (du/da) dol. Here da? is a small interval in the 
variable, 01, centered at 01~) and du, is the phase-space volume subtended by the 
interval dol. Combining this with Eqs. (15) and (17), one has 

iv r@J w@J t9(a, - a,, + ~542) B(ao + Aa/2 - CQ) 
gbo,,c 

i-l (Aa) N4m 1 p 1 (27r)3n-a ’ (18) 

Here CQ is the value of (Y for each Monte Carlo event. The approximation becomes 
an equality in the limit that Aar + 0 and N + a~ The product of the step functions 
effectively accepts only those events which lie in a bin of width Aa centered at LY,, . 
To obtain du/da as a function of Ly one may simply vary 01~ in steps of Aa. According 
to Eq. (18) this is equivalent to generating a sample of N Monte Carlo events and 
histogramming the variable (II in bins of width ACX and with weight 

applied to each entry.6 
From the above discussion it is easily seen that all Monte Carlo efficiency 

calculations essentially reduce to comparing the relative cross sections (or decay 
rates) into various phase-space subvolumes for the same model, r(p). These sub- 
volumes need not be explicitly known. One generates Monte Carlo events in the 
whole phase-space volume and, according to Eq. (15), discards those which are 

6 The fractional statistical uncertainty in the value of do/da for each bin of the histogram is 
x@>/(N<w>~), where N is the number of Monte Carlo events in the bin, <IV> is the mean weight, 
and <we) the mean square weight for the events in the bin. 
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outside the subvolume in question. The decision to discard an event can be made 
on any basis whatsoever (for example, detector geometry). This ability to define 
phase-space subvolumes and also the integrand, r@), in any set of variables, rather 
than the integration variables of some phase-space integral, as well as the ability 
to integrate any function, r(p), makes the Monte Carlo method a useful tool. 

The Monte Carlo event generator described in this report allows the generation 
of events with frequency distributions g@), whose form is given by Eq. (2). However, 
this generator may be used to generate events with more general frequency distribu- 
tions. Let g&) represent a particular frequency distribution of the form in Eq. (2). 
Then Monte Carlo events with the frequency distribution 

may be generated with this event generator. Equation (19) represents a frequency 
distribution that is a linear combination of frequency distributions of the form in 
Eq. (2). Ni is the number of events generated with frequency g&), and M is the 
number of such frequency distributions. Here Gi = J gi(p) drip = ( gi(p) w(p)>, 
where the average is taken for the events generated with frequency g&). 

First, N1 events are generated with frequency gl@) as prescribed in Section III. 
Then NZ events are generated with frequency g,@), and so on until NM events are 
generated with frequency g&). The total number of events generated is 
N = CE, Ni . The phase-space weight applied to each event for this generalized 
frequency generation is 

where W,@) is the generalization of w(p) (Eq. 14) for the case of more than one 
simple frequency distribution, gi(p). Note that the form of W&j) for an event 
depends upon the simple frequency distribution, g&), from which it came, and 
for the special case of A4 = 1, W,(p) = w(p). Substituting this generalized weight, 
IV,@), for w(p) in any of the above equations makes the equation valid for the 
generalized frequency distribution, g@) of Eq. (19). 

This Monte Carlo method allows the simulation of experiments with transition 
rate r(p) by weighting each event generated by r(p) w(p), or r@) IVi( For some 
applications, however, unweighted events are required whose density in Lorentz- 
invariant phase space is given by r(p). This can be accomplished by generating 
along with each event a random number, X, in the interval (0, x,&, where x,, is 
an upper bound for the event weights. Events are discarded whose weight is less 
than x, and those not so discarded are each given unit weight. These events are 
distributed randomly with a frequency r(p) in Lorentz-invariant phase space. The 
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upper bound, xmsx, need not be the least upper bound for the event weights, but 
the closer it is to the least upper bound the more efficient the method becomes.6 
However, this method is always less efficient than using all the events with their 
corresponding weights. 

APPENDIX A: MORE EFFICIENT INVARIANT-MASS GENERATION 

This section discusses in more detail the generation of invariant masses of particle 
subsystems and the resultant phase-space weights introduced by the generation 
method. As discussed in Sections III and IV, these invariant masses are distributed 
randomly with a frequency that is either a constant or a Breit-Wigner distribution. 
Associated with this generation method is a weight to be applied to each event which 
is the Jacobian of the transformation from the random numbers to the corre- 
sponding invariant masses. If this Jacobian is not a constant it can introduce 
additional statistical uncertainty to calculations using these events. 

Consider first the case in which no invariant masses are to have Breit-Wigner 
generation. Then each invariant mass pi is generated with constant frequency within 
its limits. That is, pi = Riri + St , where Ri is the range allowed by energy conser- 
vation for pi , ri is a random number generated in the interval (0, I), and Si is the 
sum of the rest masses of the particles combining to form the subsystem. In general 
Ri depends upon other invariant masses in the final state, specifically those that are 
generated before pi . The Jacobian of the transformation from ri to pi is simply 
J(,LQ , ri) = api/ari = Ri . The total Jacobian for the transformation from all the 
random numbers to all the invariant masses is then J(p, r) = nylt R&i+, .-* P,+~). 
Here n is the number of final-state particles. For large values of 12 this Jacobian as 
a function of the pi’s has a very rapid variation. Thus, when it is applied as part of 
the phase-space weight for the generated Monte Carlo events a great loss of effi- 
ciency results. A measure of the efficiency is the value of the quantity E = (J)“/(J2). 
This quantity has value unity for J(p, r) equal to a constant, and becomes smaller 
as J(p, r) becomes more rapidly varying. 

g A method of obtaining the least upper bound is to perform a search in the (3n - 4)-dimen- 
sional cube for the maximum of the function r@)w@) = f(xt **a x6 a** x,3, where n is the 
number of final-state particles and the x, are the random numbers in the intervals (0,l). The 
function f(xI a** xi **. xsn-,) is obtained by generating an event corresponding to a specific set 
of xi* and evaluating r@) and w(p) for the event. The search can be performed by using any one 
of many computer codes that optimize a function of several variables. (See, for example, S. 
Derenzo, MlNF68-A General Minimizing Routine, Lawrence Radiation Laboratory Group 
A Programming Note No. P-190, July 1969.) 
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If the final state is factored into cascading subsystems all of which recoil from 
a single particle, then it is straightforward to show 

E(n) = 
[2(n - 2)] ! p-2 

___- 
2y(n - 2) !]” ze &z - 2)n (n - 2) ! ’ 

(Al) 

where the approximation employs Sterling’s formula for (n - 2)!. Thus, this 
method of invariant-mass generation becomes very inefficient for large multiplicity 
in the final state. Factoring the final state in a different way increases the efficiency, 
but it still has the same general dependence on n as Eq. (Al) for large multiplicity. 

It is possible to increase the efficiency by generating the invariant masses with 
a nonconstant frequency distribution such that the Jacobian of the transformation 
from the random numbers to the masses has a less rapid variation than for the case 
of constant-frequency generation. Let pi = Ripi + & , where pi is a dimensionless 
number generated in the interval (0, 1) but with frequency h,(p$). Then Ji& , ri) = 
Ri(api/ar<) = Ri/h,(p,)y SO that the total Jacobian is 

642) 

If a set of functions h<(pi) can be found so that J(p, r) is a slowly varying function 
then the efficiency can be increased. 

Consider the generation of a two-body decay vertex p ---f p1 + pz , as discussed 
in Section III. (The notation used here is the same as in Section III.) 
Let p1 = &pl + Sl and p2 = &p, + S2 , and let there be M1 and Mz particles 
in the p1 and pz systems respectively. If 

wl+~2--2)! 
Mfl) = (Ml _ 2)! (M, _ l)! d-Y1 - d- 

and 

h&P,) = wa - 1) lP2 
for every decay vertex in the final state, then it is shown in Appendix B that the 
total final-state Jacobian has the constant value 

J(p 
, 

r) = 6% - SnY 
(n-2)! * (A5) 

Here E, is the center-of-mass energy for the final state and S,, is the sum of rest 
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masses in the final state. Thus, the efficiency due to the invariant-mass generation 
is unity, independent of the final-state multiplicity.7 

Equation (A4) implies that pz = ~;~2-l)-~, where r2 is a random number generated 
with constant frequency in the interval (0, 1). Equation (A3) can be inverted only 
for the cases in which M, = 1 or Ml = 2. For these cases p1 = ri”1-lJ-’ or 
p1 = 1 - r1 . %’ For all other cases Eq. (A3) cannot be solved explicitly for p1 as 
a function of rl . However, it is easy to show that if M, + M, - 2 random numbers 
are generated with constant frequency in the interval (0, I), and then ordered from 
smallest to largest, the (Ml - I)-th ordered random number will have the frequency 
distribution given by Eq. (A3). 

For Breit-Wigner generation of an invariant mass the Jacobian of the transfor- 
mation from the random number to the invariant mass is given by Eq. (11). In 
most applications, the motivation for employing Breit-Wigner invariant-mass 
generation is to concentrate Monte Carlo events in a region where the matrix 
element squared r(p) has rapid variation approximated by a Breit-Wigner shape. 
Thus, the major inefficiency in r(p) J(&) will be caused by the variation with invariant 
mass of the first term contained within the brackets of Eq. (11). This term will have 
rapid variation only when the upper limit of the invariant mass is less than or near 
the central value of the Breit-Wigner. Therefore, it is always most efficient to 
generate invariant masses with Breit-Wigner frequencies as early as possible in the 
generation of the event. The later in the event an invariant mass is generated the 
more restricted is its average range and the closer the upper limit will be to the 
central value of a Breit-Wigner. This will cause more rapid variation of r(p) .&A) 
and a lowering of the efficiency. This effect is also present for eat momentum- 
transfer-squared distributions, so that subsystems which are to be generated in this 
manner should also be generated as early as possible within the event for maximum 
efficiency. 

The result of the discussion in this appendix is, then, an alternative prescription 
to that given in Section III for the generation of invariant masses that leads to 
greater statistical efficiency. Consider once again the generation of a two-body 

’ Note that this applies only to the Jacobian of the transformation from the random numbers 
to the invariant masses (Eq. A2). The total phase-space weight for the event (Eq. 14) still contains 
the Jacobian of the transformation from the invariant masses to the phase space J(p, pQ) = 
(l-I:-, qi)/2”Eo, which also has a dependence on the invariant masses. The effect of this variation 
on the event efficiency is much less dramatic than that given by Eq. (Al), but is still not negligible. 
For n 2 15 the efficiency is approximated by ~(a) N e- - tn zl/A, where the value of B depends 
greatly upon the center-of-mass energy E. and the rest masses of the final-state particles. The 
least efficient case results when all the final-state particles have zero rest mass. In this case R * 5.5 
independent of & . However, when E,, = 10 GeV and the fmal state is composed of a proton 
and n - 1 pions, ii w 9.0. For n > 15, +z) falls more slowly with increasing n. For n = 25 the 
efficiency is 0.03 for the massless case and 0.13 for the later example. 
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decay vertex p -+ p1 + pz (notation is the same as in Section III). If both invariant 
masses ~1~ and pz have Breit-Wigner frequencies the prescription of Section III is 
used. If only one of them is to have a Breit-Wigner frequency then it is generated 
as in Section III and the other is generated with the frequency given by Eq. (A4). 
If neither invariant mass is to have a Breit-Wigner frequency distribution, the first 
one is given the frequency distribution of Eq. (A3) and the second that of Eq. (A4). 

This prescription will always result in greater statistical efficiency than the pres- 
cription of Section III. The increase in efficiency depends upon the number of 
non-Breit-Wigner invariant-mass generations. In the limit that all of the final-state 
invariant masses are non-Breit-Wigner, the increase in efficiency resulting from 
this prescription is closely approximated by the inverse of Eq. (Al). 

APPENDIX B 

This section will prove the assertion of the previous section that generating the 
final-state invariant masses with the frequency distributions of Eqs. (A3) and (A4) 
leads to the constant Jacobian given by Eq. (A5). 

Consider first the special case in which the final state is factored into a set of 
cascading subsystems, each one recoiling from a single particle. (Notation used 
here is the same as in Appendix A.) For this case one has the recur$m relation 
“i,; h+lpi+l and R,-, ;wIE,, - S, so that Ri = (E, - &) &l+1 pk and 
lJjI2 Ri = (Eo - SnJnmz pg=, pi- * j a Also for this case Eq. (A3) reduces to h,(pi) = 
(i - 1) pfm2, so that ny:. (i - 1) pf-’ = (n - 2)! nr1. pi-“, and therefore from 
Eq. (A2) one has the result expressed by Eq. (A5). 

Next consider a slightly more general case in which the final state is factored first 
into two subsystems of Ml and M, particles respectively, and then each of these 
subsystems is factored into cascading subsystems as above. The contribution to 
the total final-state Jacobian from the factoring of each of the cascading subsystems 
is 

JM1(p 
, 
r) = (Pl - %)M1-2 = ml - &Y1-2 pp-2 

(Ml - 2)! (M,-2)! ’ W 

and 

JM2(p 
, 

r> = @2 - Sd‘wa-2 = G% - Sn)M2-2 (1 

(M2 - 2)! (M2 - 2)! 
-p )~,-a~~-2 

1 3 W) 

where pl and p2 are the invariant masses of the two recoiling subsystems. 
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From Eqs. (A2) and (A3) one has 

Rl aCL1 (Ml - 2)! (A!& - I)! (E, - S,) 

ah -h,o= (n - 2) ! pF-2(1 - #Or)+’ ’ 

and from Eq. (A4), 

Combining Eqs. (Bl)-(B4), one has, for the total final-state Jacobian, 

(B3) 

(B4) 

Equation (B5) shows that for the purpose of calculating the Jacobian .I&, r), 
each pair of recoiling particle subsystems in the final state may be replaced by a 
single set of cascading subsystems. This replacement can be repeated for all the 
multiparticle recoiling subsystems in the final state. Then the Jacobian is just given 
by Eq. (A5). 
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